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Malaria  
Global Extent & Background 

100 Countries, >2.3 billion at risk	

-  300-500M people infected annually	

-  1-3 million deaths each year	


• 90% of mortality in children < 5	


Occurs mostly in Africa, Asia, and Latin America	


4 malaria species (identified in 1889) : Plasmodium falciparum, P. vivax, P. 
ovale, P. malariae	


Spread person-person by female Anopheles mosquito (Ross discovered 
vector in 1897)	




Anopheles	  
darlingi	  	  is	  the	  
dominant	  

malaria	  vector	  
in	  the	  Peruvian	  

Amazon	  	  
	  
	  
	  
	  
	  

Symptoms	  (e.g.,	  fever,	  
chills,	  etc.)	  appear	  ~5-‐10	  
days	  aBer	  being	  biDen	  by	  
an	  infected	  mosquito.	  	  

BiGng	  rates	  are	  
influenced	  by	  both	  

climate	  and	  land	  cover	  



Malaria in the Amazon 

60-80% of malaria in the Americas is P. vivax 	

-  Dominican Republic & Haiti are almost exclusively P. falciparum	


95% of cases in the Americas occur in Amazon basin countries	


Confirmed cases declined 66% from 2000 to 2010 in the Amazon	


In 2011 (Amazon only):	

-  30% of the population live in areas of transmission risk	


-  80% of cases reported in Brazil or Colombia	


-  Guyana, Colombia, Suriname – highest rates of infection (10-30 cases/
1000); Ecuador, Bolivia, Peru – lowest rates (0.5-2.5 cases / 1000)	
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Highest Deforestation Rate 
in Peru 

Iquitos-Nauta Road Paving &           
Fujimori logging concessions 
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Malaria in the Region of Loreto, 1990-2013 
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MAJOR FLOOD 

Roll Back Malaria 
61% decline 2000-2010 
79% decline 2006-2010 

How does climate variability and 
land use play a role in variability?	




Objectives 

(1)   Identify the relationship between climate, land use 
and malaria in Loreto between 2001 and 2011	


(2)   Develop a predictive model that improves spatial 
and temporal forecasting of malaria cases (~4-8 
weeks in advance)	


(0.1)   Develop small-scale models of malaria vectors (Anopheles 
mosquitoes) as a function of land cover, hydrometerology, 
and human population	


(0.2)   Evaluate up- and down-scaling of aggregate vs. individual 
(human) estimates of malaria risk	




Analytical Framework 

STUDIES	

1)  Vector distribution study (2000-01, Iquitos-

Nauta Road)	

2)  Vector distribution & Human malaria (2008-13, 

Iquitos-Mazan Road & Napo River)	

3)  District-level malaria modeling	




VECTOR MODELS 

q  October 2000-September 2001	

•  Larval & Adult Anopheles collection every 3 weeks	


•  ~60 locations along the Iquitos-Nauta Road	


•  Land cover, Climate, Site-collection characteristics	


•  Simultaneous Bayesian equations	


q  March 2009 – September 2013	

•  Adult mosquito collection every 2 weeks	


•  20 locations on Iquitos-Mazan Road; 8 communities Napo River; 8 
communitions Mazan River	


•  Annual human surveillance	

•  Multilevel Spatial Poisson Models	




2000-2001 Models 
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Dissertation work by Denis Valle	

Data from Amy Vittor	




Preliminary Results 

Dissertation work by Denis Valle	

Data from Amy Vittor	


Forest Cover (larva):	




Preliminary Results 

Dissertation work by Denis Valle	

Data from Amy Vittor	


Hydrometeorology (larva)	
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Preliminary Results 

Dissertation work by Denis Valle	

Data from Amy Vittor	


Impervious Area (Adults)	


Anopheles darlingi 



Analytical Framework 

STUDIES	

1)  Vector distribution study (2000-01, Iquitos-

Nauta Road)	

2)  Vector distribution & Human malaria (2008-13, 

Iquitos-Mazan Road & Napo River)	

3)  District-level malaria modeling	




DATA OVERVIEW 

q  Weekly malaria counts from ALL Government Health Posts 
(n=356) between 2001 and 2011	


•  Aggregated to administrative district (n=51) due to geographic misalignment 
of surveillance and political administrative systems	


q  Satellite-derived weekly climate & soil parameters	

•  LDAS – Land Data Assimilation System – to create measures of 

precipitation, temperature and soil moisture	


q  Land cover	

•  Both EcoRegions and land cover from NatureServe	


q  Census population data from 2007 & population estimates 
between 2005 and 2011	




DATA 
Weekly Malaria Counts 

Components of malaria surveillance in Peru	


•  Mandatory malaria reporting system	


•  Confirmation with microscopy prior to 
treatment (P. vivax: 3d CQ, 7d PQ; P. falciparum: 
3d MQ + AS)	


•  Case reported to MicroRED of residence 	

	

Problems / Limitations	


•  Quality of microscopy 	


•  Surveillance only -- not a true Risk Ratio	


•  Place of residence is not always accurately 
reported	




•  MCD12Q1 (MODIS) 
captures variability 
within the Amazon 
Forest	


•  Phenology-based 
classifications using 16-
day MODIS 250m 
NDVI product offer 
complementary 
information	


•  NatureServe sistemas 
ecologicos capture 
complementary and 
additional information	


Mountain forest���
High hills forest ���
Terrace forest���
Central wetlands	

Northern evrgn.	

forest���
Slope forest���
Rivers and 	

river banks	


NatureServe	


DATA 
Land Cover 



DATA 
Climate & Soil Moisture  

	


LAND DATA ASSIMILATION SYSTEM 	


LDAS is a computational tool that merges observations with 
numerical models to produce optimal estimates of land 
surface states and fluxes.	




Numerical Model	


Meteorological Data	


Landscape Information	


Update Observations	


LDAS Output	


•  Hydrological fluxes & storage 
•  Localized meteorology 
•  Surface energy balance 

LDAS Methodology 



•  TMPA + GDAS forcing is 
effective	


•  MODIS GVF and Land Cover 
add spatial structure	


•  Noah LSM simulations show 
significant spatial and temporal 
variability	


•  Resolution and quality of soil 
maps should be improved	


•  Evaluation data are limited	


•  Data Assimilation has had a 
marginal effect	


LDAS Data Generation 



DATA 
Population 

Annual district-level population estimates from the Peruvian Census 
Bureau (INEI)	




Prediction Model 

Requirements & Constraints:	

•  Weekly forecasts of cases by district 	


•  4-8 weeks in advance, continual updating 	


•  Integrated into the LORETO DIRESA Surveillance Program	


−  Must be able to be run using R (free statistical software)	


−  Cannot require complex computations 	

** Computers at DIRESA are not as powerful	


	




Original Model Results 

•  Spatial RE Poisson Model	

q  Climate:	

−  Precipitation, lag 10 	
à positive effect	


−  Temperature, MIN-lag 9 	
à positive effect	


	
 	
     MIN-lag 9 	
à negative effect	


	
 	
    MEAN-lag 2) 	
à negative effect	


q  Land Characteristics	

−  Soil Moisture (lag 5) 	
à negative effect	


−  Flooded forest, clear water 	
à negative effect	


q  Space-Time Factors:	

−  Spatial lag of cases (lag 6) AND a spatial trend	


−  Fourier transform (sin/cos) on weeks	




Original Model Results 

(1.598966,14.34881]
(.5767294,1.598966]
(.0542544,.5767294]
[.0164884,.0542544]

Predicted malaria week 124

(1.847913,19.46309]
(.509165,1.847913]
(0,.509165]
[0,0]

malaria rate week124

>40 hours to converge	




METHODS 
Bayesian Spatial Poisson Time Series 

Model for each district:	


Observed 
TREND	


SEASONA
L Cycles	


CLIMAT
E Drivers	


LAND 
COVER 

Characteristics	


=	


Captures the 
long-term change 

in the mean of 
malaria cases in 

the district	


Regular variation in the 
series (weekly, monthly, 

annually)	


Influences both human 
exposure (e.g., 

occupational labor) and 
Anopheles density	


CASES	
________	

POP	




METHODS 
Multilevel Spatial Poisson Time Series 

Model for each district:	


Observed 
TREND	


SEASONA
L Cycles	


CLIMAT
E Drivers	


LAND 
COVER 

Characteristics	


=	

CASES	
________	


POP	


Time Series 
Model	


Multilevel Model	




Time series component 

Selecting the model	


•  Count outcome	


•  Repeated measures à 
51 time series	


•  Non-stationary mean	


•  Seasonality	


•  Spatial correlation 
(between time series)	




Conclusions / Insights 

q  Human drivers of transmission cannot be modeled at large scales, but 
predictive models must be informed by focused studies	


q  Satellite-derived land cover, meteorology and soil moisture can drive 
skillful models of vectors and inform models of malaria risk.	


q  Land Surface Models increase the predictive value of satellite 
observations.	


q  Mosquito species respond differently to land cover change but similarly 
to hydrometeorology.	


	




Next Steps 

q  2000-01 data:	


•  Integrate human malaria infection into models	


•  Compare scaling of model to district (or higher admin) level	


q  2009-13 data:	


•  Ensure quality of final data collection and entry	


•  Finish testing of Anopheles for parasitemia	


•  Begin development of models	


q  District-level analysis 	


•  Acquire weak stationarity model across all districts	


•  Work with Peru Ministry of Health to operationalize the models	


•  Begin parameterization of an Agent-Based Model of transmission	
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